投稿指南
一、稿件要求: 1、稿件内容应该是与某一计算机类具体产品紧密相关的新闻评论、购买体验、性能详析等文章。要求稿件论点中立,论述详实,能够对读者的购买起到指导作用。文章体裁不限,字数不限。 2、稿件建议采用纯文本格式(*.txt)。如果是文本文件,请注明插图位置。插图应清晰可辨,可保存为*.jpg、*.gif格式。如使用word等编辑的文本,建议不要将图片直接嵌在word文件中,而将插图另存,并注明插图位置。 3、如果用电子邮件投稿,最好压缩后发送。 4、请使用中文的标点符号。例如句号为。而不是.。 5、来稿请注明作者署名(真实姓名、笔名)、详细地址、邮编、联系电话、E-mail地址等,以便联系。 6、我们保留对稿件的增删权。 7、我们对有一稿多投、剽窃或抄袭行为者,将保留追究由此引起的法律、经济责任的权利。 二、投稿方式: 1、 请使用电子邮件方式投递稿件。 2、 编译的稿件,请注明出处并附带原文。 3、 请按稿件内容投递到相关编辑信箱 三、稿件著作权: 1、 投稿人保证其向我方所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我方所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我方所投之作品不得同时向第三方投送,即不允许一稿多投。若投稿人有违反该款约定的行为,则我方有权不向投稿人支付报酬。但我方在收到投稿人所投作品10日内未作出采用通知的除外。 5、 投稿人授予我方享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 投稿人委托我方声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

矿业工程论文_复杂煤层条件下采煤机自适应截割

来源:机械与电子 【在线投稿】 栏目:期刊导读 时间:2022-01-13
作者:网站采编
关键词:
摘要:文章摘要:采煤机是综采工作面的核心装备,复杂煤层条件下,其工况恶劣、环境复杂,采掘装备智能化程度不高,导致我国煤矿开采灾害多、煤机适应性不强、故障率高、效率低,提高

文章摘要:采煤机是综采工作面的核心装备,复杂煤层条件下,其工况恶劣、环境复杂,采掘装备智能化程度不高,导致我国煤矿开采灾害多、煤机适应性不强、故障率高、效率低,提高煤机装备的可靠性与适应性是煤矿智能化发展的主要任务之一。采煤机工作机构与复杂煤层耦合作用机理及煤岩截割状态与动力传递系统的导控机制,是实现采煤机智能高效截割的关键。本文基于虚拟样机技术、模糊控制技术,结合数据自适应加权融合算法、深度强化学习算法,采用多领域建模与协同仿真及试验分析相结合的方法,构建机-电-液-控一体化的采煤机自适应截割系统模型,研究其自适应截割控制策略。利用AMEsim建立调高液压系统模型,并与EDEM-RecurDyn煤岩截割双向耦合模型集成;根据煤层实际赋存条件划分煤岩坚固性系数等级范围,以采煤机综合性能最优为目标,利用改进的MOGWO(Multi-Objective Grey Wolf Optimizer )算法对采煤机的牵引速度和滚筒转速进行分级优化。以采煤机截割部的时域振动信号作为煤岩截割状态识别的特征参数,运用数据自适应加权融合算法对其进行融合处理;以特征参数融合值为依据利用模糊控制实现煤岩截割状态的智能识别;利用Simulink搭建基于深度确定性策略梯度算法DDPG(Deep Deterministic Policy Gradient)的采煤机牵引速度-滚筒转速(vq-n)协同调速和自适应调高控制系统模型,利用接口技术实现EDEM-RecurDyn-AMEsim-Simulink耦合,构建机-电-液-控一体化的采煤机自适应截割控制系统模型并进行仿真,研究结果表明:系统以煤岩截割仿真数据流为主线,能够实现对煤岩截割动态过程的感知分析、信号特征处理和自适应调节的决策控制。利用物理试验验证了基于EDEM-RecurDyn耦合仿真的可行性与结果可靠性;在保证煤机综合性能最优且动态可靠的前提下,当螺旋滚筒位于上位,且识别到煤岩体坚固性系数f>7时,首先按滚筒截顶工况界定,采用vq-n协同调速及自适应调高控制策略,并可根据调高过程中采样时间(2s)内滚筒截割阻力方向振动加速度波动的变化趋势进一步判断其是处于截顶亦或截割坚硬煤岩层或硬结核(f>7且非顶底板),若识别结果为后者或煤岩体f≤7时仅采用vq-n协同调速策略;当识别到煤岩体坚固性系数f值减小的工况时,选用vq-n同时调控策略可全面考虑采煤机各性能指标;当识别到煤岩体坚固性系数f值增大的工况时,为保证采煤机的动态可靠性,选用牵引速度优先于滚筒转速的顺序调控策略,其相比于同时调控策略能够使滚筒受载降低23.7%、载荷波动减小28.1%;仿真过程验证了系统能够按照预期的调控策略对采煤机牵引速度、滚筒转速及滚筒高度进行精准调控,最长仅经0.64s即能感知到截割工况的变化,具有调节的实时性和响应的快速性,实现了复杂煤层条件下的采煤机自适应截割,并通过物理试验验证了所搭建的采煤机自适应截割控制系统及仿真结果的正确性,可有效提高采煤机对复杂煤层的适应性,为推动煤炭智能化开采探索一种先进、有效的途径。

文章关键词:

项目基金:《机械与电子》 网址: http://www.jxydzzz.cn/qikandaodu/2022/0113/1925.html



上一篇:数学论文_机械产品可靠性研究的新进展——元动
下一篇:材料科学论文_表面残余应力影响因素和调控技术

机械与电子投稿 | 机械与电子编辑部| 机械与电子版面费 | 机械与电子论文发表 | 机械与电子最新目录
Copyright © 2021 《机械与电子》杂志社 版权所有
投稿电话: 投稿邮箱: